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On The Narrow-Band Microwave Filter
Design Using a Dielectric Rod

JOHN N. SAHALOS, SENIOR MEMBER, 1EEE, AND E. VAFIADIS

Abstract — A method is presented to design bandpass or bandstop filters
in the microwave region. The procedure is based on the analysis of the
discontinuity problem of a circular cylindrical dielectric rod centered in a
rectangular waveguide. For some special relations between the frequency,
the dielectric constant, and the radius of the rod, the reflection or the
transmission coefficient becomes equal to zero. This relation gives the
narrow-band filter. Experimental results for filter design with the help of
plastic and porcelain rods are given.

I. INTRODUCTION

N DESIGNING bandpass or bandstop filters in the

microwave region, one usually utilizes a number of sec-
tions with obstacles. The most attractive method is to use a
single cylindrical post placed in the center of a rectangular
waveguide parallel to the electric field of the dominant
mode.

There are several interesting papers dealing with the
theory of the single-post problem. Marcuvitz’s Waveguide
Handbook [1] provides data for posts which have small
radii compared to the waveguide cross section. Lewin [2]
has assumed that the radius r of the post is small, allowing
higher order terms to be neglected. His assumption helps to
find the reflection coefficient for a metallic post. Many
other approximations can be found in [3]-[6]. An exact
theory has been given by Nielsen [7] in 1969. His theory
was applied to a cylinder of arbitrary complex permitivity
surrounded by a glass tube. Recently, two excellent papers
(8], [9] for the scattering of perfectly conducting [8] and
dielectric posts [9] have appeared in the literature. Our
geometry is similar to that given in [9), where we have a
dielectric post placed centrally in a rectangular waveguide.
In our procedure, a theory similar to that given by Nielsen
[7] is utilized. The difference between Nielsen’s theory and
ours is in the geometry of the interaction region. Nielsen
used a rectangular interaction region. Unfortunately, after
a numerical research, we came to agree with Lewin [10],
who expressed his doubts about the validity of Nielsen’s
theory. )

In our method, we assumed a circular interaction region
and found a fast convergence in our results. The field was
expanded in terms of waveguide modes except in the
interaction region where an expansion of cylindrical waves
was used.
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Fig. 1. Cylindrical dielectric post in a rectangular waveguide.

Zn~ In-2yz

Fig. 2. Equivalent circuit of the rod in an infinite waveguide.

The computer results are in agreement with Marcuvtz’s
for a small-post radius and have also been extended for a
large-post radius where Marcuvitz’s expressions are not
valid.

The design of a filter is treated by determining the zeros
of the reflection and the transmission coefficients for a
dielectric post with various permittivities and various radii.
After a numerical procedure, we employ some easy to use
curves where the resonant frequency of the filter, the
dielectric constant, and the radius of the post are related.

II. FORMULATION

The investigated configuration is shown in Fig. 1. The
axis of the dielectric cylinder coincides with the y-axis of
the system. It is assumed that the incident wave is the
dominant TE,, mode traveling in the z-direction. Since we
have no variations of the contour of the cylinder in the
y-direction, the total electric field will be in the same
direction. Our objective is to represent the scattered field in
the waveguide. From the field, we can find the reflection
and the transmission coefficients which can give the 7-
equivalent circuit. If R is the reflection and T the trans-
mission coefficient, then by a well-known procedure [8] the
expression of the impedance matrix is found.

Using the notation of Fig. 2 [8], we have that

_(1+R)(1-R)+T?-2T

Zy—Zp= (17R)2—T2
1
o7 (1)
“e T G Ry -1
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Fig. 3. The regions of the waveguide at the y = 0 plane.

The values Z,, and Z,,, which are of interest in the filter
design, depend on the values of the coefficients R and T.

<0 a 00
= L D703 Jeos(n) ¢ X dycos(ty,)e = cos (1, ) e

m=1

o 1
Z ( )cos(nb’ )+ Z A, [k, cos(¥,,x,)cosb, — jv,,sin(y,x,)sinb,] e /wn

m=1

= [k cos(yyx,)cos 8, + jysin(y,x,)sind, ] e/

z ( )cos(n0 )+ Z €08 (7,,x,) e/ n7 =0

5

We have the following two different cases:
R=0,T=¢" (2)
T=0, R=e’" (3)
Equations (2) and (3) show that the design of a filter can
be carried out at the points where the values of the
dielectric constant and the radius of the dielectric post
make the coefficient R or T equal to zero.

We start analyzing the configuration of Fig. 1 by divid-
ing the waveguide into three separate regions I, II, III (see
Fig. 3). The field is expanded in TE,, modes in the
regions I and III and in cylindrical modes in the region II
(interaction region).

The incoming electric field is

E}(x,z)=cos(y,x)e/”

where v, = 7/a, &k = (k3 — Y2, ky=27/A,.

In the outer regions I and 111, the field will be expressed
as

region I:

(4)

[e9]
El(x.2)= % Aycos(yx)e

m=1

(5)

region 111:

o0
E/"(x,z)= ). B,cos(y,x)e’ "

m=1

(6)

where m=1,3,5,..., v, =mn/a, &, =(k3—v2)/% and
A,,. B,, are arbitrary complex coefficients.

In region II, the field will be expressed separately out-
side and inside the cylinder. Outside the cylinder, we have

[ee]

El'(r,0)= ¥ [c,

n=20

J,(kor )+ DnYn(Ko”)] cos(nd)

a [e 0]
44 ( 2)cos né, )+ Z e 16, €08 (,,%,) cOs B, + v, sin(y,,x, ) sinf,] e/ = 0
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and inside
ES(r,0)= Zo (8)

where C,, D,, and G, are complex expansion coefficients,
J, is the Bessel and Y, the Neumann function, and x
the propagation constant in the cylinder equal to wy/pe.

Using the Maxwell equations, we can find from (4)—(8)
the corresponding components of the magnetic field.

By applying the boundary conditions at the discontinu-
ity surface r = r, and numerical matching of the field at
the surface of the interaction region r = a /2 we can find a
set of four complex linear equations. These are

G,J,(x,r)cos(nf)

(9)

where
a a
0<b,<7/2 xa=zsin00 and Za=50030a
a a
0<6b,<7/2 xb:ismab and Z,,=5c0s0,,
Z J (kr) -
, = +
(r) = S T )
PN o DO
= + 4
“(kr) o) {xr
KOJn/(KOrp)Jn(Kprp)_KpJn(KOrp)Jn/(Kprp)

8= : - .
KpY;z(K’Orp)Jn(Kprp)—KO},n (KOrp)Jn(Kprp)
(10)

For a finite number of terms in the summations and a
proper number of different values of 8, and §,, we can
solve the above system (9). Our method provides a set of
answers for the mode coefficients. If the number of match-
ing points is increased and a negligible change in the
coefficient results, it is assumed that the process is conver-
gent and that enough terms have been selected for a given
order of accuracy.

This seems a reasonable working assumption if the field
representation is itself not defective. In our waveguide
structure, the usual series of modes form a complete set
and the solution is unique and original.

From all the 4, and B,, we need the 4, and B; because
they give the reflection coefficient R and the transmission
coefficient T correspondingly. The 4, and B, for i#1
correspond to image «,, which give far from the z = 0 point
neglecting field terms.
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Fig. 4. Magnitude of the reflection coefficient as a function of dielectric
constant (r/a = 0.05).

It must be pointed out that with the geometrical form of
our interaction region we do not need matching conditions
on the waveguide walls. This is an advantage of our
method compared to Nielsen’s, where expression (5) must
be valid on the walls.

IIL.

To illustrate our accuracy, let us review the example
given by Araneta et al. [9]. They compared the results
of their technique with those derived by Nielsen and
Marcuvitz. Fig. 4 shows the reflection coefficient |R| as a
function of the dielectric constant. The relevant parameters
are r/a=0.05 and ?\0/)\ =0.7. A, is the free-space
wavelength and A_ is the gu1de-wave1ength Our numeri-
cal procedure shows the resonant condition at a dielectric
constant of €, =112.5. This value was found for different
numbers of expansion modes in order to ensure conver-
gence.

The difference between our results and Araneta’s is
minor for the special case of small-post radius. We believe
that our results are more accurate for two reasons.

1) First, because our expressions (7) and (8) with the first
two or the first four terms are similar to 1 X1 or 2X2
approximations of [9].

ii) Second, because for posts with bigger radius (r/a >
0.20) the 2 X2 approximation gives pure results. (In some
cases, we found |R|>1.)

Our results with a 6 X6 approximation is a logical con-
clusion to that given in [9], where for a 2 X2 approximation
the dip in |R| compared to that given for 1 X1 approxima-
tion goes to increases e,

Fig. 5(a) and 5(b) show the results of the reflection and
the transmission coefficients for a classical case of a wave-
length ratio A,/A, .o €qual to 0.799 and r/a=0.1. The
results show a reverse variation between the |R| and |T|
versus the dielectric constant. To design a filter, we need a
post with a dielectric constant equal to 34.4. In this case,
the reflection coefficient is zero and the transmission has a
value equal to

RESULTS AND FILTER DESIGN

T=e*/m,

(11)

This gives that Z,, — Z;, =0, Z,, = o0 and the filter will
be a bandpass filter.

An estimation of the accuracy shows the absorption
coefficient 4=y1—|R|>—|T|?, which must be zero. In
Table I, we show the values of R, T, and 42 for a post '

with r/a =025 and A, /A, = 0.6366.

1167
t/a=0.1 wavelength ratio= 0.799544709
10
AN R I /'\ "1

9 \‘ Il \

) A
[: 4 N A \ / \\
° [i 1
: L N | — V1Y

\ -
Lo \ [T] ,’\ /\\
k- Y *
sl JA
° 5 A .
3 / 7 \ / N
> N / "\
-é-' a AN / \
~ Ve ~

LN el A7 L]

) \

W \

L
[} 5 10 15 20 25 30 35 40 a5 50

Dielectric constant

(a)

t/a=0.1 wavelength ratio = 0.799644709
180 T—== T
fooe = i -
150 = 1 =
x L~ ! -~
o 20 vz |l - 4
2 [
% 50 / lL//
[ T |
« 60 I
o 1
e w '.
% 1
& o 3
@ i
& -% T
= 1
& g !
S | !
~90 )
—_—— LR | |
L ] /
-120 1
L [} //
H s
-150 1 PL
-180 B el
0 5 10 15 20 25 30 35 40 a5 50
Dielectric constant
(b)
Fig. 5. (a) Magnitude of the reflection and transmission coefficient as a

function of dielectric constant (r/a = 0.1). (b) Phase of the reflection
and transmission coefficient as a function of dielectric constant

(r/a=0.1).

As we can see, there is no convergence in the 2X2
approximation while we get accurate results for the 6 X6
and even more accurate results for the 9 X 9 approximation.

Fig. 6 shows the amplitudes of the reflection and the
transmission coefficients for the same post. It is shown that
there are many min and max, and we could design filters
for dielectric constants given in Table II.

From the results given before, we conclude that there is
always a combination between r, a, A, , and A, for
which we could design a narrow-band filter. With our
method, we can find all the forms of the filter for any kind
of dielectric post.

A numerical procedure gave a relation of the form

rp/a =f(€r9 >\O/>\cl‘0)' (12)

For a bandpass filter, the simpler relation is of the form
1 /a= A(Ro/A, )P0 (13)

and for a bandstop filter of the form
/a=C(Aa/A, )P0 (1)

The functions A()xo/)\c o B(Ao/A ), C(Xo /A, ), and
D(Ao/A, ) are given in the Figs. 7(a) and (b) and 8(a)
and (b). Smce we have more than one resonance, there are
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TABLEI
REFLECTION, TRANSMISSION, AND ABSORPTION COEFFICIENTS FOR DIFFERENT VALUES OF THE DIELECTRIC CONSTANT FOR
A Post WiITH r/a = 0.25 AND Ao/A,, ,=0.6366

2x 2 approximation 6 x6 approximation 9x9 approximation
€
’ IR IT! A? IR} Il A [R] [T] A?
9.75(1.73311910,9045501-2.821928[0.818899]0.594025]-0.023461[0.814690(0.579856 4,7223x10°°
9.8010.629549/0.964953|-0.327466(0.629455(/0.764319 (-0.027156/0.637145 0.770739| 7.6429x107°
9.85(0.270158/0.448906| 0.725498{0.453720{0.879967 | 0.019796(0.4603899|0.887464 -2.0240x10°°
0.90]0.267652[0.9677121 0.008104(0.301495/0.948478 | 0.009490(0.305940 0.952054 [-6.1030x10°°
9.9510.203526{0.,895640| 0.156406{0.175139]0.980196 | 0.008542(0.175591 0.984462 | 2.3713x10°°
10,00(0,278382[0.952654| 0.014954 0.07322-3 1.992840 | 0.008907]0.066800{0.997766 | 7.6920x10" "
r/a=026 wavelength ratio = 0 636610350 (1) f2) (3)
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Fig. 6. Magnitude of the reflection and transmission coefficient as a -0

function of dielectric constant (r/a = 0.25).

TABLE II
FILTERS FOR DIFFERENT VALUES OF THE DIELECTRIC CONSTANT
FOR A POST WITH r/a = (.25 AND A/A, , =06366

€p IR| IT| Kind of filter

2.95 0 1 B.P.
9.03 A 0 1 B.P.
9.65 1 0 B.S
10.02 0 1 B.

16.87 0 1 B.P
17.03 1 0 B.S.
19.20 0 1 B.P.
31.72 0 1 B.P.
32.34 1 0 B.S.
32.72 0 1 B.P.
46.11 0 1 B.P.
46.25 1 0 B.S.
48.43 0 1 B.P.

more than one curve that is a function of 4, B, C, and D.
The first three curves are given in Fig. 7(a) and (b). It is
interesting to note that, in all cases, the functions B and D
are near the value 0.5.

From the curves in Figs. 7 and 8, we can design a filter
for a given resonance frequency. If we have a dielectric

75

|
|
K 1

43 .44 a5 .46 a7 a8 49 50 51 52 .53 .54 55

Fig. 7. (a) Coefficient 4 as a function of A,/ A, (b) Coefficient B as
afunction of Ay /A,

material, we can define the radius of the post, while , while
for a given radius, we can define the dielectric constant.

As a simple example, we give the design of a bandstop
filter for a WR 90 waveguide in the frequency of 10.301
GHz. From Fig. 8(a) and (b), we have that ¢ = 0.821 and
D =0.5245. To have a ratio r,/a=0.25, we need a dielec-
tric constant equal to 9.64672. In this case, the insertion
loss of the filter as a function of frequency is given in
Fig. 9.

%or a resonant frequency of 10.380 GHz, the dielectric
constant will become equal to 9.472. So, we see that a small
difference in the dielectric constant can markedly change
the resonant frequency.
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Fig. 9. Theoretical response of a bandstop filter.

A question which remain is the problem of the dielectric
loss. Have we the same resonant frequency for a dielectric
post with losses and without losses?. A numerical investiga-
tion gives the same results as expected. We have the same
resonant frequency but the insertion-loss curve will be
smoother. Fig. 10 shows the insertion loss as a function of
frequency for a post with r,/a=0.25 and €,=9.472 for
three different tané.

Since it is not possible or even practical to make materi-
als with relative dielectric constants to the accuracy re-
quired, our approach must start from a given material
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Fig. 10. Theoretical response of a bandstop filter with a dielectric rod -
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Fig. 11. Measured response of a bandstop filter with a plastic (ertalon)
rod.

which will be used to build the dielectric post. The radius
of the post can be made to the accuracy required, after a
definition from (13) or (14).

The above examples show that it is possible to design
narrow-band filters with the help of dielectric posts.

To show the accuracy of the method, an experimental
filter was designed, fabricated, and evaluated. The post was
designed from the plastic material ertalon with a dielectric
constant €, = 3.12 and resonant frequency f = 9.37 GHz
for the WR 90 waveguide. Fig. 7(a) and (b) given that
A =0.447 and B = 0.4575, and from those we geta r, /a =
0.26575. An experimental verification with the help of the
HP-8410B network analyzer gives the return loss of the
filter as a function of frequency, which shows the reso-
nance at the same frequency (see Fig. 11).

A porcelain rod with a dielectric constant €; = 5.446 and
tan® = 2.33-10~2 was also evaluated. To have a stopband
at the frequency 12.4651 GHz, we found that C =0.6613
and D = 0.5221. Equation (14) gave a ratio r, /a equal to
0.27296. The theoretical and measured performance of the
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* / [& Multiplying by cos m8, we get
_ 30 - 2
| N = s |\ Dy = ———r
§25 \ RL WZZn(KO—_)
-4 , \/ R.L L v 2
N ;
li’15 i .{R—1,2n+ Z (Am+Bm)Rm,2n}
N "
§10 2 ]
i Dy, =———F—7%
® 7} | ko=
0 J .J~ 2 ""‘) SOV UPTRI ETLELD il > ( ’ 2 )
’ F (:: ) * i
requenc z
! '{L~1,2n_ Z (Am+Bm)Lm,2n}
Fig. 12. Theoretical and measured response of a bandstop filter. n=1
2
filter is shown in Fig. 12. As we can see, there is excellent D,,_ ;= =
agreement between the theoretical and the experimental wZz,,_l(nO—)
results. 2
0
IV. A THEORETICAL EXPRESSION OF THE RESONANT CON- : {— R_jgn1— 2 (4,- Bm)Rm’Zn_l}
DITION n=1
The procedure presented gives numerically the values of D _ 2
the reflection and transmission coefficients. Close scrutiny ~ 2"~! a7’ (x a )
of (9) gives some further ideas on the theoretical definition 2n=11 M09
of the resonant conditions. 0
If we change the angle 8, to § =« — 6, and 6, to 6, we -{L_l sno1t 2 (A4,—B,)L, 2n_1} (17)
get only one variable § where 0 < 6 < 7/2 ’ n=1 '

o0 a [ee]
-y DnZn(:cog)(—l)"cos(n0)+ Y. A,,c0s(v,x)e " " = —cos(y,x)e /*
0 -

m=1

o0 a 2]
iy xoDnZ,;(xoz)(—l)"cos(nﬂ) + Y A, [k,,c08(¥,x)cos8 + jv,,sin(y,,x)sing] e’ n*
n=0 n=1

= [k, cos(y1x)cos @ — jy, sin(y;x)sin8] e ?

[eo] a e o]
-y DnZn(xoi)cos(n0)+ 3 B,cos(v,x)e’ =0

n=0 m=1

oo a o0
iy KODnZ,;(xoi)cos(nﬁ) + . B,[k,,cos(y,x)cos8 + jy,sin(y,x)sinf]e’ =0
n=0 m=1
where x =a/2sinf and z=a/2cos¥.
After some algebra, we split the even and odd terms of D, in the following system:

o0 a [e o]
-2 DZnZZn(icoa)cos(2n0)+ Y (4,,+ B,,)cos(y,,x)e’n* =—cos(y,x)e 7 *

n=20 n=1

(s o] a o0
2y D2n*122n_1(x05)cos(2n——1)0+ 21 (A4,,— B,,)cos(v,,x)e’* = —cos(y,x)e /?
e

n=1

oo} a o]
27 3 xODZnZ§n(K0§)cos(2n0)+ Y (4,,+ B,)|[x,,cos(v,x)cosf + jy,, sin(y,,x)sinf]e/n
n=0 n=1

= [k, cos(y;x)cos 8 — jy, sin(y,x)sinf]e=/m*

o0 a o0
-2; ¥ KoDzn_1Z£n~1(Koz)COS(2"—1)0+ > (4,,— B,)[x,,c08(y,,x)cos 8 + jv, sin(v,,x)sinf] e/
n=1

n=1

(15)

(16)

=[x, c0s(y;x)cos @ — jy, sin(y,x)sinf]e/5*
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where

7/2 .
Rin,m=f0/ cos(y,x)e /" cosmf db

L.,

1
”"=x—j(; /2[:cncos(y,,x)cos0+jynsin(y,,x)sinﬁ]
0

-e*/*m*cosmbdf. (18)
Equating the even and odd D,, we have that ‘

x a . ay .
Z (Am + Bm)[zén(xo_z_)Rm,Zn - JZZn(KOE)Lm,Zn]

m=1
a - a
= Zén(KOE)R—1,2n+.]ZZn(KO—i)L—~1,2n:| (19)

m

a a
(Am - Bm) [ZZ/n—l(KOE)Rm,Zn—l(KOE) Lm,2n~1]
1

a a
== [Zén—l(KOE)R—l,Zn—l + jZ2n>1(KO_2_)L—1,2n:I'
(20)

For a finite number of terms in (19) and (20) and for
different values of n, we can have two systems of linear
equations with unknowns (4,, + B,,) and (4,, — B,). From
those, we look at the (4, + B;) and (4; — B;). The condi-
tion .

(A4, +B,) = (4, - B) (21)

gives a bandstop filter, while the
(A1+B1)=_(A1_Bl) (22)

gives a bandpass. Both (4, + B;) and (4, — B,) depend on
Z,(koa/2), Z)(koa/2), R, ., L, ,,and from (21) and (22)
we can find the resonant condition by changing the ¢,, 7,
and k.

We could use the system (19) and (20) to find all the
coefficients A, and B,. Our preference on the point-
matching technique came from the expression of the inner
products (18) for which there is not any easy analytic
expression.

V. CONCLUSION

A numerical method has been given to analyze a dielec-
tric post in the middle of a rectangular waveguide. From
the method, a technique to design narrow-band filters was
presented. The filter design was given, in easy to use
graphical form, for bandpassing and bandstoping. An ex-
perimental result has shown the validity of the procedure.
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