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On The Narrow=-Band Microwave Filter
Design Using a Dielectric Rod

JOHN N. SAHALOS, SENIOR MEMBER, IEEE, AND E. VAFIADIS

,41mtract—A method is presented to design bandpass or bandstop filters
in the microwave region. The proeednre is based on the analysis of the

discontinuity problem of a circnlar cylindrical dielectric rod centered in a

rectangular wavegnide. For some special relations between the frequency,

the dielectric constant, and the radius of the rod, the reflection or the
transmission coefficient becomes equal to zero. This relation gives the

narrow-band filter. Experimental results for filter design with tlhe help of
plastic and porcelain rods are given.

I. INTRODUCTION

I N DESIGNING bandpass or bandstop filters in the

microwave region, one usually utilizes a number of sec-

tions with obstacles. The most attractive method is to use a

single cylindrical post placed in the center of a rectangular

waveguide parallel to the electric field of the dominant

mode.

There are several interesting papers dealing with the

theory of the single-post problem. Marcuvitz’s Waueguide

Handbook [1] provides data for posts which have small

radii compared to the waveguide cross section. Lewin [2]

has assumed that the radius r of the post is small, allowing

higher order terms to be neglected. His assumption helps to

find the reflection coefficient for a metallic post. Many

other approximations can be found in [3]–[6]. An exact

theory has been given by Nielsen [7] in 1969. His theory

was applied to a cylinder of arbitrary complex permitivit y

surrounded by a glass tube. Recently, two excellent papers

[8], [9] for the scattering of perfectly conducting [8] and

dielectric posts [9] have appeared in the literature. Our

geometry is similar to that given in [9], where we have a

dielectric post placed centrally in a rectangular waveguide.

In our procedure, a theory similar to that given by Nielsen

[7] is utilized. The difference between Nielsen’s theory and

ours is in the geometry of the interaction region. Nielsen

used a rectangular interaction region. Unfortunately, after

a numerical research, we came to agree with Lewin [10],

who expressed his doubts about the validity of Nielsen’s

theory.

In our method, we assumed a circular interaction region

and found a fast convergence in our results. The field was

expanded in terms of waveguide modes except in the

interaction region where an expansion of cylindrical waves

was used.
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Fig. 1. Cylindrical dielectric post in a rectanfyrlar waveguide.

I

Fig. 2. Equivalent circuit of the rod in an infinite waveguide,

The computer results are in agreement with Marcuvtz’s

for a small-post radius and have also been extended for a

large-post radius where Marcuvitz’s expressions are not

valid.

The design of a filter is treated by determining the zeros

of the reflection and the transmission coefficients for a

dielectric post with various permittivities and various radii.

After a numerical procedure, we employ some easy to use

curves where the resonant frequency cjf the filter, the

dielectric constant, and the radius of the post are related.

IL FORMULATION

The investigated configuration is shown in Fig. 1. The

axis of the dielectric cylinder coincides with the y-axis of

the system. It is assumed that the incildent wave is the

dominant TEIO mode traveling in the z-direction. Since we

have no variations of the contour of the cylinder in the

y-direction, the total electric field will be in the same

direction. Our objective is to represent the scattered field in

the waveguide. From the field, we can find the reflection

and the transmission coefficients which can give the T-

equivalent circuit. If R is the reflection and T the trans-

mission coefficient, then by a well-known procedure [8] the

expression of the impedance matrix is found.

Using the notation of Fig. 2 [8], we have that

(l+ R)(l-R)+T2--2T
Z,l – Z12 =

(1- R)’- T’

2T

I

. (1)

Z12 =
(1- R)’- T2
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and inside

E~(r,9)= 5 G. J.(KPr)cos(nd) (8)
~=o

where Cm, D., and G. are complex expansion coefficients,

J. is the Bessel and Y. the Neumann function, and K is

r
the propagation constant in the cylinder equal to u PC.

Using the Maxwell equations, we can find from (4)-(8)

Fig. 3. The regions of the waveguide at the y = O plane. the corresponding components of the magnetic field.

By applying the boundary conditions at the discontinu-

The values 211 and 212, which are of interest in the filter
ity surface r = rP and numerical matching of the field at

design, depend on the values of the coefficients R and T.
the surface of the interaction region r = a\2 we can find a

set of four complex linear equations. These are

We have the following two different cases:

R=O, T=eJ’ (2)

T=O, R=eJr. (3)

Equations (2) and (3) show that the design of a filter can

be carried out at the points where the values of the

dielectric constant and the radius of the dielectric post

make the coefficient R or T equal to zero.

We start analyzing the configuration of Fig. 1 by divid-

ing the waveguide into three separate regions I, II, III (see

Fig. 3). The field is expanded in TE~O modes in the

regions I and HI and in cylindrical modes in the region II

(interaction region).

The incoming electric field is

E;(x, z) = cos(ylx)e~”z (4)

where yl = fi/a, K1= (K? – yf)l/2, K. = z7r/~o.

In the outer regions I and 111, the field will be expressed

as

region 1:

E;(x, z) = ~ A~cos(y~x)e-J’m’ (5)
m=l

region III

(6)E“’(x, Z) = f &COS(ymX)&JKmz
Y

~=1

where m =1,3,5,..., y~ = mT/a, K = (K: – y~)l/2, and

AM, BW are arbitrary complex coeffic~ents.

In region II, the field will be expressed separately out-

side and inside the cylinder. Outside the cylinder, we have

(K r)+ Dny.(Kor)]cos(nf9)E1r(r,6) = 5 [C~~, o
Y

~=o

(9)

)

where

J~(Kr)
zn(Kr)= —+ Y~(Kr)

%(Kr)

J;(Kr)
Z~(Kr)=— + Y{(Kr)

gH(Kr)

KoJn’(Korp)Jn(Kprp)–KpJn(Korp)~;(Kprp)
gn =

Kpyn(Korp)-t’(Kprp )- KOK’(KOrp)J.(Kprp) “

(lo)

For a finite number of terms in the summations and a

proper number of different values of O. and tl~, we can

solve the above system (9). Our method provides a set of

answers for the mode coefficients. If the number of match-

ing points is increased and a negligible change in the

coefficient results, it is assumed that the process is conver-

gent and that enough terms have been selected for a given

order of accuracy.

This seems a reasonable working assumption if the field

representation is itself not defective. In our waveguide

structure, the usual series of modes form a complete set

and the solution is unique and original.

From all the A, and B,, we need the Al and B1 because

they give the reflection coefficient R and the transmission

coefficient T correspondingly. The A, and B, for i # 1

correspond to image K,, which give far from the z = O point

neglecting field terms.
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Fig. 4. Magnitude of the reflection coefficient as a function of dielectric
constant (r/a = 0.05).

It must be pointed out that with the geometrical form of

our interaction region we do not need matching conditions

on the waveguide walls. This is an advantage of our

method compared to Nielsen’s, where expression (5) must

be valid on the walls.

III. RESULTS AND FILTER DESIGN

To illustrate our accuracy, let us review the example

given by Araneta et al. [9]. They compared the results

of their technique with those derived by Nielsen and

Marcuvitz. Fig. 4 shows’ the reflection coefficient IR I as a

function of the dielectric constant. The relevant parameters

are r/a = 0.05 and XO/A.,, = 0.7. X ~ is the free-space

wavelength and A ~,, is the guide-wavelength. Our numeri-

cal procedure shows the resonant condition at a dielectric

constant of ~,= 112.5. This value was found for different

numbers of expansion modes in order to ensure conver-

gence.

The difference between our results and Araneta’s is

minor for the special case of small-post radius. We believe

that our results are more accurate for two reasons.

i) First, because our expressions (7) and (8) with the first

two or the first four terms are similar to 1 X 1 or 2 X 2

approximations of [9].

ii) Second, because for posts with bigger radius (r/a >

0.20) the 2 X 2 approximation gives pure results. (In some

cases, we found, Il?l > 1.)

Our results with a 6 X 6 approximation is a logical con-

clusion to that given in [9], where for a 2 X 2 approximation

the dip in IR I compared to that gjiven for 1 x 1 approxima-

tion goes to increases E,.

Fig. 5(a) and 5(b) show the results of the reflection and

the transmission coefficients for a classical case of a wave-

length ratio AO/A ~1~ equal to 0.799 and r/a = 0.1. The

results show a reverse variation between the IR I and IT I

versus the dielectric constant. To design a filter, we need a

post with a dielectric constant equal to 34.4. In this case,

the reflection coefficient is zero and the transmission has a

a

r/a =0.1 wavelength ratio. 0.7991544709
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Fig. 5. (a) Magnitude of the reflection and transmission coefficient as a
function of dielectric constant (r/a = 0.1). (b) Phase of the reflection. .
and transmission coefficient ;S a function of dielectric constant
(r/a = 0.1).

As we can see, there is no convergence in the 2X 2

approximation while we get accurate results for the 6 x 6

and even more accurate results for the 9 X 9 approximation.

Fig. 6 shows the amplitudes of the reflection and the

transmission coefficients for the same post,, It is shown that

there are many rnin and max, and we could design filters

for dielectric constants given in Table H.

From the results given before, we conclude that there is

always a combination between r, a, A., ~, and A ~ for

which we could design a narrow-band filter. With our

method, we can find all the forms of the filter for any kind

of dielectric post.
A numerical procedure gave a relation of the form

rP/a =f(~r} ~O\~c,,O)o (12)

value equal to For a bandpass filter, the simpler relation is of the form

T=e*Jn. (11) (13)

This gives that Zll – Zlz = O, Zlz = co and the filter will ~d for a b~dstop filter of the form

be a bandpass filter.

An estimation of the accuracv shows the absomtion
rP/a = C(Xo/ACI O)t; D(XO/~C’,O). (14)

. .
coefficient A = {~, which must be zero. In The functions A(Ao/AClo), B(AO/ACIO), C(Ao/hC, O), and

Table I, we show the values of R, T, and A2 for a post ~ D(Ao/AC,,) are given in the Figs. 7(a) ,and (b) mid 8(a)

with r/a = 0.25 and Ao/Ac,, = 0.6366. and (b). Since we have more than one resonance, there are
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TABLE I
REFLECTION, TRANSMISSION, AND ABSORPTION COEFFICIENTS FOR DIFFERENT VALUES OF THE DIELECTNC CONSTANT FOR

A POST WITH r/a = 0.25 AND ko/)iC,, = 0.6366

r

!2.7s 1.;33119 0.904559

!l.8il 0.629549 0.964 !?53

9.8S fl.2; fl15R 0.448906

IIg.g(l 0.267652 fl .967712

9.95 0.?03526 [0. s95640

10.00 0.278382 0.9 S2654

-?.82192E

-0.327466

0.725498

0.008104

0.156406

0.014954

6x6 approximation

IRI IT I A’

0.818S99 0.594025 -0.023461

0.6294SS 0.764319 -0.0271S6

0.453720 0. S79967 0.019796

0.301495 0.948478 0.009490

0.175139 0.980196 0.008542

0.07322”3 0.992840 0.008907

r/a. 025 wavelength ratio. o 636610350

K

~
m

1-

,=
:.

<

Dielectric constant

Fig. 6. Magnitude of the reflection and transmission coefficient as a

function of dielectric constant ( r/a = 0.25).

TABLE II
FILTERS FOR DIFFERENT VALUES OF THE DIELECTRIC CONSTANT

FOR A POST WITH r/a = 0.25 AND ~/~,,0 = 0.6366

~r

2.95

9.03

9.65

10.02

16.87

17.03

19.20

31.72

J2.34

52.72

16.11

46.25

48.43

IRI

o

0

1

0

0

1

0

0

T

o

0

1

0

]Tl

1

1

0

1

1

0

1

1

0

1

1

0

1

Kind of filter

B.P.

B.P.

B.s.

B.P.

B.P.

B.s.

B.P.

B.P.

B.s.

B.P.

B.P.

B.S.

B.P.

more than one curve that isa function of A, B, C, and D.

The first three curves are given in Fig. 7(a) and (b). It is

interesting tonotethat, in all cases, the functions B and D

are near the value 0.5.

From the curvesin Figs. 7 and 8, we can design a filter

for a given resonance frequency. If we have a dielectric

9X9 approximation

IRI IT I *2

0.814690 0.579856 4 ,7223x10-’

0.63714S 0,770739 7 .6429x10-’

0.460S99 0.887464 -2 .0240x10-5

0.305940 0.9s2054 -6 .1030x10-’

0.175591 0.984462 2 .3713x10-’

3.066800 0.997766 7 .6920x10-7
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Fig. 7. (a) Coefficient A asa function of AO/ACIO, (b) Coefficient B as

a function of AO/A,, O

material, wecandefine the radius of the post, while, while

fora given radius, wecandefine the dielectric constant.

As a simple example, we give the design of abandstop

filter for a WR 90 waveguidein the frequency of 10.301

GHz. From Fig. 8(a) and (b), we have that c = 0.821 and

D = 0.5245. To have a ratio rP/a = 0.25, we need a dielec-

tric constant equal to 9.64672. In this case, the insertion

loss of the filter as a function of frequency is given in

Fig. 9.

For a resonant frequency of 10.380 GHz, the dielectric

constant will become equal to 9.472. So, we see that a small

difference in the dielectric constant can markedly change

the resonant frequency.
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Fig. 9. Theoretical response of a bandstop filter.

A question which remain is the problem of the dielectric

loss. Have we the same resonant frequency for a dielectric

post with losses and without losses?. A numerical investiga-

tion gives the same results as expected. We have the same
resonant frequency but the insertion-loss curve will be

smoother. Fig. 10 shows the insertion loss as a function of

frequency for a post with rp/a = 0.25 and (V= 9.472 for

three different tan 8.

Since it is not possible or even practical to make materi-

als with relative dielectric constants to the accuracy re-

quired, our approach must start from a given material

Fiz. 10. Theoretical resuonse of a bandstop filter with a dielectric rod
for various tan 8.

Fig. 11. Measured response of a bandstop filter with a plastic (ertalon)

rod.

which will be used to build the dielectric post. The radius

of the post can be made to the accuracy required, after a

definition from (13) or (14).

The above examples show that it is possible to design

narrow-band filters with the help of dielectric posts.

To show the accuracy of the method,, an experimental

filter was designed, fabricated, and evaluated. The post was

designed from the plastic material ertalon with a dielectric

constant c1 = 3.12 and resonant frequency j = 9.37 GHz

for the WR 90 waveguide. Fig. 7(a) and (b) given that

A = 0.447 and B = 0.4575, and from those we get a rP/a =

0.26575. An experimental verification with the help of the
HP-841OB network analyzer gives the return loss of the

filter as a function of frequency, which shows the reso-

nance at the same frequency (see Fig. 11).

A porcelain rod with a dielectric constant c1 = 5.446 and

tan 8 = 2.33.10’2 was also evaluated. Tc) have a stopband
at the frequency 12.4651 GHz, we found that C = 0.6613

and D = 0.5221. Equation (14) gave a ratio rP/a equal to

0.27296. The theoretical and measured performance of the
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Fig. 12. Theoretical and measured response of a bandstop filter.

Multiplying by cos m8, we get

(R –1,2. + ~ (z4m + B~)R~,2.
~=1 }

2j
D2~ = –

()

a
~z;~ KO—

2

(L -1,2. - i (Am+ %)%>,n
“=1 }

2
filter is shown in Fig. 12. As we can see, there is excellent D2._ ~=

()

a
agreement between the theoretical and the experimental ~Zj~–l xo—

2results.

IV. A THEORETICAL EXPRESSION OF THE RESONANT CON-
“(

-R-1,2.-1- F (Am-B~)Rrn,zn-~

DITION ~=1 }

The procedure presented gives numerically the values of D 2

the reflection and transmission coefficients. Close scrutiny
2n–~=—

()

a
~z;~–l Ko~

of (9) gives some further ideas on the theoretical definition

of the resonant conditions.

If we change the angle (?=to O = n – d. and 8~ to 8, we
{

L -1,2.-1 + ~ (4 – %) J%,2.-1

)

(17)

get only one variable O where O ~ f3~ r/2 “=1

— ~ ~n+o;)(+ncos(nd)+ ~ A~cos(y~x)e-~”.’ = ‘COS(ylX)e-~’lz
~=() ~=1

()
j ~ KoD~Z~ KO~ (–l)”cos(n13) + ~ A~[x~cos(y@) cos8+jy~sin (y~x)sin@]e~”mz

*=0 ~=1 1

= [~lcos(ylx)cosd - jylsin(ylx)sind] e-~’z

/

(15)

— ~ D~Z.(Ko~)COS(nd)+ ~ B~cos(y~.x)e’”Mz=O
~=o ~=1

()

a
j ~ tcoDnZ; zKO— cos(nd) + ~ Bw[Km COS(ymX)COSi9 + jyMsin(y~x) sin O]e~’”’=O

~=o ~=1

where x = a/2sin(3 and z = a/2cos 6.

After some algebra, we split the even and odd terms of D. in the following system:

B~)cos(y~x)e~’mz = –cos(ylx)e-~~l’

()
a

2 ~ Dz. _1z2. -1 ‘0~ COS(2n –1)8 + ~ (Am – BW)cos(y~x)e~’mz = –cos(ylx)e-~’lz
~=1 ~=1

()
a co

2j ~ KoD2nZ;n zKo— cos(2n6)+ ~ (Am + BM)[Kw COS(ymx)COSd + J’y~sin(y~x )sin6]eJ’m2
~=o ~=1 I(16)

= [K,cos(Y,X)coso - jylsin(ylx)sin~ ]e-”z

()
–2j 5 KO%.l ZL-1 KO~ COS(Z~ –1)0 + 5 (Am – Bm)[Km COS(YmX)COS8 + jy~sin(y~x) sind]e~’m=

~=~ ~=1
}

= [xIcos(YIX)COSd - jylsin(ylx)sinO] e-J’z
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where

. e ‘JKmzcosm(3d6. (18)

Equating the even and odd D., we have that

~ (Am+Bm)[Z;n(Ko;)Rw,2n- jZ2n(Ko;)Lm,2n]
~=1

‘-[z’(Koi)R-12+~22(Koi)L-lnl ’19)

( a)L-J~(~m-~m)[Z:n_l(Ko; )~m,2n_l K,~

~=1

‘-[z~n-l(Koi)R-l$2n-l+ ~z2.-l(Koi)L-12nlo

(20)

For a finite number of terms in (19) and (20) and for

different values of n, we can have two systems of linear

equations with unknowns (Am + Bm) and (Am – IIM). From

those, we look at the (Al+ 131) and (Al – Bl). The condi-

tion

(A1+B,)=(A, -BJ (21)

gives a bandstop filter, while the

(A1+B1)=-(A1-B,) (22)

gives a bandpass. Both (Al+ 111) and (Al – Bl) clepend on

Z~(tcoa/2), Z;(Koa/2), R~,., L~,., and from (21) and (22)

we can find the resonant condition by changing the c., r~,

and K,.

We could use the system (19) and (20) to find all the

coefficients A ~ and B~. Our preference on the point-

matching technique came from the expression of the inner

products (18) for which there is not any easy analytic

expression.

V. CONCLUSION

A numerical method has been given to analyze a dielec-

tric post in the middle of a rectangular waveguide. From

the method, a technique to design narrow-band filters was

presented. The filter design was given, in easy to use

graphical form, for bandpassing and bandstoping. An ex-

perimental result has shown the validity of the procedure.
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